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ABSTRACT

In recent years, product search engines have emerged as a key

factor for online businesses. According to a recent survey, over

55% of online customers begin their online shopping journey by

searching on an E-Commerce (EC) website like Amazon as opposed

to a generic web search engine like Google1. Information retrieval

research to date has been focused on optimizing search ranking al-

gorithms for web documents while li�le a�ention has been paid to

product search. �ere are several intrinsic di�erences between web

search and product search that make the direct application of tradi-

tional search ranking algorithms to EC search platforms di�cult.

First, the success of web and product search is measured di�erently;

one seeks to optimize for relevance while the other must optimize

for both relevance and revenue. Second, when using real-world EC

transaction data, there is no access to manually annotated labels.

In this paper, we address these di�erences with a novel learning

framework for EC product search called LETORIF (LEarning TO

Rank with Implicit Feedback). In this framework, we utilize implicit

user feedback signals (such as user clicks and purchases) and jointly

model the di�erent stages of the shopping journey to optimize for

EC sales revenue. We conduct experiments on real-world EC trans-

action data and introduce a a new evaluation metric to estimate

expected revenue a�er re-ranking. Experimental results show that

LETORIF outperforms top competitors in improving purchase rates

and total revenue earned.
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1 INTRODUCTION

For any E-Commerce (EC) website, there can be millions of prod-

ucts to surface for a given search query. How can an EC platform

determine which items are most relevant? More importantly, how

can it produce a ranked list for its consumer that promises to gener-

ate optimal revenue? EC sales are expected to reach $414 billion by

20182. Given that EC search engines are the starting point for many

online consumers, a subtle change in the ranking algorithm can

lead to drastic changes in user satisfaction and revenue. In the past,

LEarning TO Rank (LETOR) [20] has been e�ective for optimizing

search engine results, but li�le a�ention has been paid to its use in

EC platforms. In this work, we adapt LETOR by designing a ranking

system that speci�cally caters to the needs of EC platforms.

Traditionally, LETOR constructs ranking models using manually

obtained labels to sort documents according to their relevance to

the query. �ese labels are usually static in the sense that, for a

particular query, relevant documents remain the same for di�erent

users. Ranking metrics like NDCG (Normalized Discounted Cumu-

lative Gain) and MRR (Mean Reciprocal Rank) are �rstly introduced

and de�ned on these static labels. Optimizing these static-based

ranking measures has become a central topic of LETOR in the past

decade. Since product search in an EC platform can also be for-

mulated as a ranking problem, LETOR methods seem a natural �t

for such scenarios. However, intrinsic di�erences between web

search and product search have exposed several important chal-

lenges for applying LETOR to product search. One key issue is that,

the notion of “relevance” is blurred. Di�erent users come to EC

websites with a wide spectrum of intents. Some wishes to purchase

as soon as possible while others are just wondering on the sites

to get inspired. �erefore, “relevance” for an EC search engine

requires multiple signals to be integrated, such as clicks, favorites

and most importantly purchases. �is is very di�erent from classic

LETOR when labels can be clearly de�ned. It is very challenging,

if not impossible, to utilize the same procedure from generic web

search to obtain a static set of human labels for each query. �us,

two critical problems for product search is to de�ne labels with

multiple signals and optimize a revenue-related objective function.

In most EC platforms, the gold standard for measuring success

is Gross Merchandise Volume (GMV). �is indicates the total dollar

amount transacted from merchandise sales; the overall revenue

generated for the EC site is proportional to the GMV. An optimal

ranking algorithm for an EC platform should therefore maximize

the value of purchases per search session. Figure 1 illustrates the

two stages of an EC product search session: (1) A consumer �rst

2h�ps://www.forbes.com/sites/forrester/2014/05/12/us-ecommerce-grows-reaching-
414b-by-2018-but-physical-stores-will-live-on/
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Figure 1: Illustration of a sample search session in an EC

platform. �e query is “rosy wedding dress”, and the search

result page is shown on the le� and a portion of the prod-

uct page for two items are shown on the right. �is session

consists of two stages: (1) selecting a product to click from a

ranked list, and (2) deciding whether to purchase the prod-

uct by reading its detailed description.

searches by a query and selects a product to click, and then (2)

decides whether or not to purchase the product by examining its

detailed description. As such, the �rst stage is a ranking problem,

where listings should be presented to the consumer in the order of

relevance, while the second stage is a binary classi�cation problem,

which models the consumer’s decision to purchase or not. �is is in

contrast to a classical LETOR model that only considers the ranking

problem (stage one) and does not address the classi�cation task

(stage two). �is scenario is also di�erent from classic sponsored

search advertising, which usually only shows a limited number of

ads per search page and usually there is no need to consider to

optimize an explicit ranking metric like NDCG or MRR.

In this work, we study the entire search session, including the

two stages of clicking (ranking) and purchasing (classi�cation).

�e problem is challenging as the two tasks are inherently related

to di�erent loss functions: a ranked list is usually evaluated by

a list-wise metric like NDCG, while a binary variable is usually

measured by precision, accuracy, or error rate. In particular, we aim

to investigate how implicit feedback can be utilized. It is di�cult

to directly apply implicit feedback like clicks for a generic search

engine [14]. Our investigation on utilizing implicit feedback signals

leads to a novel framework of revenue optimization for a two-

stage EC search engine. Experiments on real-world data show the

superiority of LETORIF over other competitive baselines, such as

Random Forest and LambdaMART. To the best of our knowledge,

this is the �rst piece of work that aims to discover the optimal

ranking algorithm for optimizing revenue for an EC search platform.

�e contributions of this work can be summarized as follows:

• Introduce an emerging problem of optimizing revenue of

search engines in E-Commerce;

• Present a novel learning framework to jointly utilize im-

plicit user feedback signals to optimize revenue;

• Suggest mathematical formulation to e�ciently solve the

optimization problem;

• Evaluate the proposed method on real-world EC transac-

tion data and elaborate on the e�ects of using di�erent

parameters and user feedback signals.

�e remainder of this paper is structured as: In Section 2, we

introduce the problem of search in EC. In Section 3, we introduce

our proposed framework and the optimization method with theo-

retical analysis. We conduct experiments on real-world datasets in

Section 4, and then introduce related work in Section 5. Finally, in

Section 6, we conclude the paper and present future directions.

Table 1: Notations and Description

Notation Description

s search session

i, q, ρ(i) item, query, position of i

is an item impressed in session s

qs the query of session s

Ψ(i),Φ(i) event of click and purchase

Price(i) price of item i

m number of items in a search result page

2 PROBLEM STATEMENT

Let s ∈ S be a search session consisting of a query is qs ∈ Q and

m items will be displayed in a ranked list. An item is ∈ I may

be displayed with rank ρ(is ), and may be clicked Ψ(is ) = 1 or

purchased Φ(is ) = 1, or Ψ(is ) = 0, Φ(is ) = 0. Given the price

of each item Price(i). We de�ne the expected Gross Merchandise

Volume (GMV) as:

GMV =
∑

∀s ∈ S
︸ ︷︷ ︸

A search session

∑

∀is
︸︷︷︸

An item in s

Price(is )
︸    ︷︷    ︸

Price of is

Pr (Φ = 1|is ,qs ),
︸              ︷︷              ︸

Prob of purchase

(1)

where the expected sales value is accumulated for each search

session. Our goal is to learn a ranking function f (·) that generates

ranking lists to maximize the Expected Gross Merchandise Volume.

Note that, a purchased product must have been clicked, while a

clicked one is not necessarily to be purchased, so we omi�ed Ψ

here. We will use revenue and GMV interchangeably for rest of the

work. Notations throughout the work are presented in Table 1.

3 OPTIMIZING GMVWITH IMPLICIT
FEEDBACK

One of the main challenges in utilizing existing search ranking

techniques is the lack of labeled information in EC product search.

Traditional LETORmethods are e�ective in optimizing list-wise loss

functions given high-quality labeled information, which requires

eliciting relevance ratings from human experts and crowdsourcing.

However, there is no standard way of obtaining ground-truth in-

formation in the context of EC as employing manual annotation is

nearly infeasible: hundreds of products may be similarly relevant to

a query. Meanwhile, implicit user feedback is prevalently available
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on EC platforms and can be used to reveal the “quality” of a search

result. We focus on user clicks and user purchases.

3.1 Optimizing Click

Given a set of search sessions S , for a certain query q, the quality of

a product can be measured by how o�en it is being clicked. Hence,

the query-speci�c Click-�rough Rate (CTR) can be used to produce

annotations as

CTR(i |q) =
∑

sq ∈S

Ψ
sq (i)

|{sq ∈ S}|
, (2)

where CTR(i |q) denotes the probability of item i being clicked

given query q and sq is a session that is with the query q. CTR(i |q)

re�ects the “utility” of a listing and can be used for annotation and

constructing a benchmark dataset. A ranked list sorted by CTR is

similar to the training data for web search. LETOR methods can

then be applied to learn a ranking function.

In the simplest form, LETOR models can directly predict the

ranking or relevance score of items using regression or classi�-

cation [18], commonly referred to as point-wise approaches. For

example, a squared loss function can be used as

Losspoint (y
q
i ) = (y

q
i − l

q
i )

2, (3)

where the point-wise loss function Losspoint denotes how far the

predicted value y
q
i deviates from the actual score l

q
i and l

q
i ≔

CTR(i |q). However, point-wise approaches assume items to be

independent and identically distributed (i.i.d.) and the interdepen-

dency among web documents is not considered. �e position of

an item in a ranked list depends on other items, so a point-wise

ranking model is unable to see the position of an item or the �nal

ranking. �e usage of point-wise estimation greatly limits the ef-

fectiveness of these methods since most information retrieval tasks

focus on the relative order of results instead of the absolute score.

Instead, pair-wise LETOR methods directly model the relative

order of items. Items are modeled as a pair (ia , ib ) and the loss

function measures the inconsistency between the true relative order

and the predicted one as

Losspair (y
q

a,b
) = −y

q

a,b
log l

q

a,b
− (1 − y

q

a,b
) log(1 − l

q

a,b
), (4)

where a cross-entropy loss function is used and l
q

a,b
is the proba-

bility that a is ranked higher than b. l
q

a,b
can be obtained with a

sigmoid function,

l
q

a,b
=

1

1 + el
q
a −l

q

b

. (5)

A complete ranked list can be recovered by modeling the relative

order with Eq.(4). As such, positions of items are indirectly visible to

a pair-wise LETOR method [2]. A limitation is that pairs generated

by di�erent queries are mixed and the structure a query manifests

cannot be fully exploited. In order to tackle the challenge, list-wise

approaches jointly model the entire group of items.

A common evaluation metric for ranked lists is Normalized Dis-

counted Cumulative Gain (NDCG) [13]. NDCG is o�en counted

from the top and truncated at a rank position K . �e formulation

is wri�en as

NDCGK (ϱ) = N−1
max

K−1∑

r=0

2l (r
−1)

log(1 + r )
, (6)

where ϱ is a ranking order and NDCGK denotes the NDCG score at

top K (NDCG@K). Nmax is the maximum value of
∑K−1
r=0

2l (r )

log(1+r )

that is used as a partition function. r−1 is the item index that is

ranked r in ϱ. 2l (·) is a gain function and l(i) is the label value of

item i . �e maximum value is achieved when items are optimally

ordered by decreasing label value. �rough optimizing list-wise

cost functions, positions of items are directly visible to the learning

algorithm and the query-level structures are also considered. In

this work, by contrast, we propose to directly optimize the entire

ranked list for product search engines.

3.2 Optimizing Purchase

One main goal of search engines in EC is to maximize the number

of purchases. Modeling a purchase is di�erent from optimizing a

search result page. A search result page presents items in a ranked

list, while the decision to purchase is made a�er reading the product

description page. A similar problem is predicting the conversion

of a clicked ad: when a user clicks a sponsored link, the post-click

reaction, such as purchase, download, registration and subscription,

can be independently modeled [25]. Motivated by current studies

on ad conversions [25, 44], we adopt a logistic regression model

to estimate the conversion. �e problem is to solve the following

convex optimization problem,

min
wp,b

N∑

i=1

log{1 + exp[−l ′i (wpxi + b)]} + | |wp | |
2, (7)

wherewp is the vector of model parameters and b is the model bias.

For simplicity of presentation, we augmentwp by incorporating b,

which can be implemented by adding an additional dummy feature.

l ′i is the purchase label of an item in the list that represents whether

the item was purchased or not in the search session.

3.3 Proposed Method for Product Search

Product search in EC consists of two stages: (1) clicking on a product

from the search result page and (2) deciding whether to purchase.

A similar problem is that of sponsored ad revenue estimation [25].

Revenue from displaying an ad comes from user clicks and/or some

prede�ned action, such as registration, subscription or purchase.

Current research can be classi�ed into two genres: First, purchases

can be modeled as higher weighted clicks (e.g., a purchase equals

1,000 clicks) [41]; Second, purchases can be modeled separately by

assuming that they are independent of the previous search result

page [25]. However, these current methods are not well-suited for

the problem of product search either. Clicks on a search result page

do not necessarily lead to a purchase since there are other intents

beyond simply purchasing, such as browsing and searching [22].

Hence, regarding purchases as weighted clicks may introduce bias

from noisy clicks. In addition, purchases and clicks are not inde-

pendent. For example, such relationships usually hold in a search

session: P(Φ = 1|Ψ = 0) = 0 and P(Ψ = 1|Φ = 1) = 1.

In our proposed method, we decompose the purchase into two

stages: (1) clicking related items and (2) purchasing a speci�c one.

We propose a nested framework to holistically model the inter-

dependence of the two stages. We aim to predict the purchase

3



behavior of users, and the conditional probability can be wri�en as

Pr (Φ = 1|i,q) = Pr (Ψ = 1|i,q)
︸           ︷︷           ︸

click model

Pr (Φ = 1|Ψ = 1, i,q)
︸                    ︷︷                    ︸

purchase model

, (8)

where Pr (Ψ = 1|i,p,q) denotes the conditional probability of click

given a displayed item, the display position and the query, and

Pr (Φ = 1|Ψ = 1, i,q) is the conditional probability of purchase

given the item and the query.

We focus on a typical search session, so being clicked is a pre-

requisite for an item to be purchased Pr (Φ = 1|Ψ = 0, i,q,u) = 0.

�e display position (p) is omi�ed in the purchase model, namely

(Φ ⊥⊥ P) | Ψ, (9)

where the position is only considered in the search result page.

Hence, the modeling of clicks is dependent on other displayed

items, which leads us to a ranking problem, while the purchase

model is a binomial classi�cation task.

As discussed in Section 3.1 and Section 3.2, we aim to optimize

user clicks in a list-wise manner while purchases in a binomial

classi�cation manner. Let us assume that we have a click proba-

bility ranking function fc (·) that takes in product features xia and

produces the probability of the item being clicked Pr (Ψ = 1|ia ),

and a purchase probability function fp (·) that takes in xia and pro-

duces the probability of the item being purchased Pr (Φ = 1|ia ). �e

vectors of parameters to learn arewc andwp , respectively.

Learning fc (·): Given the click probability ranking function

fc (·), the probability that an item ia is ranked higher than ib is

proportional to:

Pr (r (ia ) < r (ib )) ∝ fc (xia ) − fc (xib ), (10)

where r (ia ) is the rank of ia , e.g., r (ia ) = 1 represents ia is the

top ranked item. We denote the probability as P̃r (r (ia ) < r (ib )) =

fc (xia )− fc (xib ) for simplicity. Hence, the expected rank of an item

can be estimated as

r̃ (ia ) =

m∑

ib=1,ib,ia

1((fc (xia ) − fc (xib )) ≤ 0), (11)

where 1 is an indicator function that equals 1 if the condition holds

and 0 otherwise. �erefore, the ranking can be estimated with the

predicted score. In order to optimize the ranking order in a list-wise

se�ing, we replace the r in Eq.(6) with the estimated rank in Eq.(11).

�e objective function can be formulated as

max
ϱ

N−1
max

m∑

i=1

2l (i)

log(1 + r̃ (i))
, (12)

where we rewrite the NDCG formulation with an item index i .

However, it is di�cult to directly optimize the objective function in

Eq.(12) since the ranking r (i) is not continuous due to the sorting

in Eq.(11). We propose to relax the estimation of rank in Eq.(11) as

r̄ (ia ) =

m∑

ib=1,ib,ia

σ (P̃r (r (ia ) < r (ib ))), (13)

where σ (·) is the sigmoid function. By incorporating σ (·), the pair-

wise comparison in Eq.(11) for sorting is transformed into a di�er-

entiable function. In addition, the new formulation is smooth and

convex and can be conveniently optimized. By integrating Eq.(13)

with 12, the new objective function can be formulated as

max
ϱ

N−1
max

m∑

i=1

2l (i)

log(1 +
∑m
j=1, j,i σ (P̃r (r (i) < r (j))))

, (14)

where the rank is approximated with the estimated score. �e

objective function can be further decomposed as

Lc = N−1
max

m∑

i=1

2l (i)

log(1 +
∑m
ib=1,ib,ia

σ (fc (xa ) − fc (xb )))
, (15)

where the subscript for q is omi�ed since the calculation only

happens within a search session. �e maximization of Eq.(14) leads

to a ranked list with an optimal estimated NDCG. In order to obtain

the optimal parameters, we di�erentiate the objective function with

respect towc . �e derivative can be wri�en as,

∂Lc

∂wc
=

∂Lc

∂r̄ (i)

∂r̄ (i)

∂wc
, (16)

where the �rst term is the gradient of the NDCG score with respect

to the ranking order, and the second term is de�ned by the logistic

regression model in Eq.(13). Each search session contains a list of

items, and we try to de�ne a gradient vector for each item i .

Given the estimated rank of an item, the gradient of NDCG can

be formulated as,

∂Lc

∂r̄ (i)
= N−1

max

m∑

i=0

−2l (i)

(1 + r̄ (i)) log2(1 + r̄ (i))
, (17)

where a large di�erence between the ground truth label l(i) and

the predicted ranking r̄ (i) can lead to a signi�cant change in the

parameters, which will in turn change the item order.

Given the click probability function fc (·), the gradient of the

ranking order with respect to the parameters can be wri�en as

∂r̄ (i)

∂wc
=

∂
∑m
ib=1,ib,ia

σ (fc (xa ) − fc (xb ))

∂wc

=

∂ fc (xa )

∂wc

m∑

ib=1,ib,ia

σ [fc (xa ) − fc (xb )]{1 − σ [fc (xa ) − fc (xb )]},

(18)

where the �rst term is the gradient of the point-wise scoring func-

tion. Following existing LETOR studies [2], we adopt a neural

net model, and the gradient
∂fc (xa )
∂wc

can be computed with back-

propagation [16]. Note that other regression methods can also be

used here, though in our experience the choice did not signi�cantly

impact performance. �e second part is the gradient for the sigmoid

function, where a similar ranking order between ia and ib leads to

a greater change to the parameters. �e gradient in Eq.(18) updates

the ranking order according to the loss function and distinguishes

the positions of items by enlarging the distance between them.

Learning fp (·): As discussed in Section 3.2, prediction of pur-

chases is modeled in a binary classi�cation se�ing. We �rst rewrite

the loss function in Eq.(7) by augmentingwp with a model bias b.

Lp =

N∑

i=1

log{1 + exp[−l ′i (wpxi )]} + | |wp | |
2, (19)

where b is incorporated withwp and the feature vector xi is aug-

mented by adding a dummy feature. Here, l ′i denotes whether the
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item has been purchased. �rough minimizing Lp , which is a con-

vex optimization problem, we can achieve a vector of parameters

wp that optimally predicts purchases. �e gradient of Lp can be

wri�en as

∂Lp

∂w
j
p

=

N∑

i=1

w
j
p (l

′
i −wpxi ) − 2w

j
p , (20)

wherew
j
p is the jth feature, and the incorporated model bias is also

jointly updated. A potential problem is that Eq.(19) maximizes the

number of purchases, while the goal of an EC platform is to opti-

mize GMV that also correlates with price of items. By introducing

the functions for modeling clicks and purchases, the GMV can be

estimated as

GMV =
∑

∀s ∈S

∑

∀is

Price(is )Φ(is )

=

∑

∀s ∈S

∑

∀is

Price(is )Pr (Ψ = 1|is ,p(is ),qs )Pr (Φ = 1|is ,qs ),

(21)

where the price Price(is ) is introduced as a weighting term. We

further incorporate the price of each item into the purchase model,

leading to a new loss function,

Lp =

N∑

i=1

Price(i) log{1 + exp[−l ′i (wpxi )]} + | |wp | |
2, (22)

where Price(is ) is used to weight each item. Since cheaper items

are usually purchased more frequently, incorporating the price of

each item substantially increases the output of the purchase model

when the items are more expensive. �is is an appealing bias that

we aim to achieve in order to optimize GMV.

Algorithm 1 Training Algorithm of LETORIF

Input: Search sessions: S

Maximum number of iterations: Maxiter
Early termination function : EarlyStop()

Output: Parameters of the model: wc ,wp

1: Initializewc andwp randomly, VLoss[Maxiter ], iter = 0

2: Split S into training and validation set, Str and Sval
3: do

4: Train fc (·) with Str for 1 epoch with Eq.(18)

5: Train fp (·) with Str for 1 epoch with Eq.(20)

6: Test LETORIF with (Sval ) to obtain loss VLoss[i]

7: iter = iter + 1

8: while EarlyStop(VLoss, i) = FALSE AND (i < Maxiter )

We show the training algorithm of the proposed LETORIF in

Algorithm 1. We input the labeled search sessions S which is ran-

domly split into a training and a validation set in line 2. We set the

maximum number of iterations to beMaxiter , and also use a func-

tion EarlyStop() to control early termination of the optimization

process, taking the loss on the validation set as input. From line 3 to

8, we interchangeably optimize the click and purchase model until

the maximum number of epochs is reached or the early termination

condition is met. In order to optimize GMV, the price of each item

is incorporated into Eq.(20) as a weighting term. NDCG is adopted

to calculate the loss in line 6.

Table 2: Statistics of the EC search session dataset used in

this study.

Sessions �eries Items Avg. Items per Session

334,931 239,928 6,347,251 19.0

Keywords Buyers Sellers Avg. Items per �ery

631,778 270,239 550,025 26.5

4 EXPERIMENTS

In this section, we introduce details of the experiments to validate

the e�ectiveness of the proposed method. We aim to answer two

questions through the experiments:

(1) How well can LETORIF utilize implicit feedback signals to

learn a ranking model compared with traditional LETOR methods

and purchase models?

(2) How e�ective is the proposed LETORIF in improving the

Gross Merchandise Volume through jointly modeling clicks, pur-

chases and prices?

In order to answer the questions, we collect product search ses-

sion data from a real-world EC platform, and conduct experiments

with state-of-the-art approaches for comparison. Traditional evalu-

ation metrics are mainly designed for measuring relevance between

search queries and web documents. To be�er understand e�ective-

ness of product search in an EC platform, we introduce a novel

evaluation metric to measure the e�ect on revenue.

4.1 Datasets

We collect 4 weeks’ worth of search log data with clicks and pur-

chases from an EC platform, Etsy. In order to utilize implicit feed-

back signals of users, we focus on queries that receive at least 1

purchase and over 100 impressions. A�er randomly sampling across

the �ltered log data, we have in total 334, 931 search sessions with

239, 928 queries and 6, 347, 251 items. �ere are 270, 239 buyers and

550, 025 sellers involved in the transactions. 631, 778 keywords are

used by sellers to describe their items. Detailed statistics about the

dataset are shown in Table 2.

For each query, we collect all corresponding search sessions, and

calculate the average revenue for every impression. �e average

revenue for a query-item pair i , q can be calculated as,

Avд.Rev(i,q) =
price(i) × purchase(i,q)

|{Sq |i ∈ Sq }|
, (23)

where purchase(i,q) denotes the number of times i has been pur-

chased in a search session for query q, and {Sq |i ∈ Sq } are the set of

search sessions for query q where the item i is impressed (shown).

We follow the conventional practice of LETOR research to label the

dataset in an ordinal, integer scale [23]. For each query, items are

ordered with an evaluation measure. We test average revenue as

well as click-through rate and purchase rate. More details can be

found in Section 4.3.1

We extract 54 features to represent pairs of queries and items,

which are shown in Table 3. �ese features can be separated into

two categories: 51(17×3) relevance features and 3 revenue features.

Relevance features are computed from titles, descriptions and user-

compiled tags of items, and the corresponding search query. �e
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Table 3: A list of features represented for pairs of queries

and items. Titles, descriptions and user-compiled tags are

extracted for each item. We focus on relevance-centric and

revenue-centric features. Relevance features consist of low

level features that can directly be calculated from text, and

high level features that are built upon language modeling.

Relevance

Low Level

Sum of TF

Sum of Log TF

Sum of Normalized TF

Sum of Log Normalized TF

Sum of IDF

Sum of Log IDF

Sum of ICF

Sum of TF -IDF

Sum of Log TF -IDF

TF -Log IDF

Lenдth

Log Lenдth

High Level

BM25

Log BM25

LMDIR

LM JM

LMABS

Revenue

Price

Price −Cat .Mean

(Price −Cat .Mean)/Cat .Mean

low level relevance features include TF (term frequency), IDF (in-

verse document frequency), ICF (inverse corpus frequency), length

(number of words) and their variations. �e high level relevance

features are the outputs from the Okapi BM25 and LMIR ranking

algorithms, which measure the similarity between queries and text.

We use di�erent smoothing methods for LMIR including DIR, JM

and ABS. Details of relevance features can be found in [23]. Rev-

enue features include the price of an item, and how far it deviates

from the average price of the corresponding category.

4.2 Experimental Settings

In order to answer the two questions above, we conduct two experi-

ments to validate the e�ectiveness of the proposed LETORIF. In the

�rst experiment, we follow the conventional practice of information

retrieval studies, and adopt NDCG to evaluate the ranking power of

di�erent methods for each query. We collect a query-based dataset,

as mentioned in Section 4.1. In order to perform a �ve-fold cross-

validation, we shu�e all data instances and randomly split them

into �ve folds. In each iteration, one fold of data is used for testing

while the other four for training. �e average NDCG of �ve folds

of experiments is reported. In order to evaluate di�erent aspects

of each methods, we introduce three NDCG scores: click-based

NDCG, purchase-based NDCG and revenue-based NDCG, which

are obtained based on the descending ranking order of average

click-through rate, average purchase rate and average revenue, re-

spectively. In this work we mainly focus on revenue-based NDCG

while the other two are used to provide insights.

In the second experiment, we aim to evaluate how LETORIF can

improve the actual revenue of search sessions. We use the adopted

methods to rerank the search results of each search session, and

observe how the reranked list would a�ect the actual revenue. We

chronologically partition search sessions into 80/20 splits, where

the �rst split is used for training and the second for test. In order

to measure the revenue, we de�ne a metric called Rev@K . We

assume that an item that has been actually purchased, will also

be purchased under the new ranking order if it is shown in the

top K positions. Rev@K can be seen as the average revenue that

a prediction algorithm would generate for each session. In real

applications, a user may click various results instead of a �xed

number. We make the assumption of top K to measure the ranking

quality for optimizing revenue. In particular, calculation of Rev@K

can be formulated as

Rev@K(ϱ) =
∑

∀s ∈S

∑

rs ≤K

Price(r−1s )Φ(r−1s ), (24)

where ϱ is the ranking order and rs ≤ K denotes the top K ranked

positions in the session s . r−1s represents the corresponding item at

the position.

In addition to LETORIF, we include approaches that fall in three

categories: state-of-the-art relevance methods that optimize user

clicks, purchase prediction methods that model the purchase be-

havior, and methods that jointly optimize purchases and clicks.

For relevance methods, we include the following 7 Learning-To-

Rank methods:

• RankNet (RNet) is one of the �rst adopted LETOR algo-

rithms. A neural network is used to minimize the pair-wise

loss function (cross entropy).

• RankBoost (RBoost) extends AdaBoost [9] by replacing

the loss function for classi�cation with a pair-wise loss

function.

• AdaRank (ARank) adapts AdaBoost to solve ranking prob-

lems by assigning weights to queries. AdaRank focuses

more on the di�cult queries/search sessions.

• LambdaRank (LRank) uses a neural network to minimize

the pair-wise loss function, which is similar to RankNet.

LambdaRank weights each pair by how it a�ects the list-

wise loss function.

• ListNet (LNet) is a list-wise approach that calculates the

probability of each position of a ranked list, and uses a

neural network to minimize the K-L divergence [15] to the

ideal ranking order.

• Multiple Additive Regression Trees (MART) is a tree boost-

ing algorithm that consists of multiple decision trees as

weak learners. Pair-wise loss functions are adopted.

• LambdaMART (LMART) extends MART by introducing a

weighting term for each pair of data, as how LambdaRank

extends RankNet with list-wise measures.

In addition, we study the e�ectiveness of directly modeling pur-

chases by including 3 classi�cation methods to directly model the

purchase behavior:

• Support Vector Machines (SVM) are widely used for bi-

nary classi�cation. We test with di�erent combinations
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Table 4: Baseline methods implemented for comparison in

this work. Popular LETOR methods, purchase prediction

methods and two joint models are adopted.

Click

RankNet [2] RNet

RankBoost [8] RBoost

AdaRank [36] ARank

LambdaRank [3] LRank

ListNet [4] LNet

MART [10] MART

LambdaMART [35] LMART

Purchase

SVM [5] SVM

Logistic Regression [25] LR

Random Forest [19] RM

Both

Weighted Purchase [41] WT

LMART+RM LMRM

LETORIF LETORIF

of loss functions and regularizations and the best perfor-

mance is reported, though it did not a�ect the performance

signi�cantly.

• Logistic Regression (LR) has been adopted to predict post-

click behaviors of web search engines that directly model

the probability of purchase.

• Random Forest (RM) is a bagging method that trains mul-

tiple decision tree models and ensembles them. RM is a

state-of-the-art nonparametric classi�er and is relatively

insensitive to noise.

LETORIF jointly utilizes purchases and clicks to optimize the

expected GMV. Hence, we also include 2 baselines that optimizes

expected revenue through jointly optimizing clicks and purchases:

• A common practice in industry is to assign more weight

to the behaviors that lead to more revenue, such as pur-

chases and conversions. In order for comparison, we follow

the practice to linearly integrate purchases as WeighTed

purchases (WT) and learn a relevance model [41].

• LETORIF simultaneously models clicks and purchases for

revenue optimization. In order to investigate the e�ect

of jointly modeling the two data sources, we introduce to

ensemble a relevance model and a purchase model by esti-

mating the joint probability. LambdaMART (LMART) and

Random Forest (RM) are selected by testing possible com-

binations and the baseline method is denoted as LMRM.

�e selected 12 baseline methods are shown in Table 4 as well as

the proposed method LETORIF. WT is the state-of-the-art method

for optimizing revenue in computational advertising. Short forms

of these methods are introduced for the convenience of notation.

All model parameters of baseline methods (e.g., the number of trees,

tree depths) are tuned on the holdout validation set.

4.3 Experimental Results

In this section, we discuss our experimental results of NDCG in

a conventional LETOR se�ing, and results w.r.t. Rev@K showing

how well the methods can improve actual revenue.

4.3.1 Comparison on NDCG. Table 5 illustrates the NDCG@5

for di�erent methods on NDCG@5. We report the NDCG@5 on

training (Train), validation (Vali) and test datasets. Based on the

experiments, we make following observations:

Revenue NDCG LETORIF achieves the best Revenue NDCG

among all methods, showing the e�ectiveness of jointly optimiz-

ing user click and purchase behaviors. MART and RM achieve

the best score among click and purchase optimization methods,

respectively. Click-based methods generally perform be�er than

purchase-based methods, which indicates that product search is

more a ranking problem and the interdependency between products

exists. �ough LMART and RM get relatively high NDCG@5 on the

training dataset, they are outperformed by the runner-up method

MART due to over-��ing. By linearly integrating purchase infor-

mation, WT outperforms most relevance methods except MART.

Similar to LMART, LMRM achieves a high training and validation

NDCG while outperformed by LETORIF due to over��ing since

the performance on test data is much lower than that on validation

and training data.

Click NDCG Ignoring purchase behaviors makes the EC search

sessions identical to a web document dataset. In this experiment,

LMART achieves the best Click NDCG@5 among all methods,

which is consistent with prior observations on benchmark studies

of web search that LMART is the best performing method. MART is

the runner-up method and the other click-based method RNet also

achieves relatively high NDCG@5. Purchase-based methods can be

viewed as point-wise methods that predict the purchase behavior.

�e superiority of click methods further proves the importance of

modeling interdependency between items.

Purchase NDCG LETORIF achieves the best purchase NDCG.

Purchase-based methods outperform all click-based methods but

MART. �e result shows that though the purchase of an item is in-

dependent, jointly modeling the interdependency of click behaviors

between di�erent products and user purchases positively impact

the performance. Revenue NDCG can be viewed as the purchase

NDCG weighted by the product price. By taking price into consid-

eration, LETORIF outperforms other baseline methods by a larger

margin. �is is an appealing bias that we would like to achieve and

it helps the optimization to focus on items with greater estimated

revenue. �e superiority of LETORIF over the other two joint base-

lines WT and LMRM reveals that linearly integrating purchases

with a higher weight or completely dealing with the two problems

independently cannot achieve the optimal performance.

4.3.2 Comparison on Revenue. Table 6 illustrates the Rev@K

for di�erent methods with a varying K . We vary the range from 1

to 10 to focus on the top ranked items. According to the de�nition

of Rev@K , a larger K represents that a customer is more likely

to purchase, and a ranking algorithm is easier to obtain revenue.

Based on the experimental results we make following observations:

When K = 1, MART achieves the best actual revenue. �e

problem here becomes a point-wise task if only the top ranked

item brings about revenue. �is se�ing is a li�le strict compared

with actual search sessions. In Figure 2 we show the distribution of

positions of actual purchased items in the top 4 ranks of a search

result page, where nearly 70% purchases are made below the �rst

position. LETORIF is the runner-up method in the se�ing.
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Table 5: Comparison of di�erent ranking algorithms in terms of NDCG@5 on training, test and validation sets. Five-fold

cross-validation has been adopted and a holdout set is used as a validation set. �e three NDCG@5 are calculated based on

click-through rate, purchase rate and average revenue, respectively.

Category Method
Click NDCG@5 Purchase NDCG@5 Revenue NDCG@5

Train Vali Test Train Vali Test Train Vali Test

Click

RNet 0.1743 0.1731 0.1378∗∗ 0.1672 0.1721 0.1676∗∗ 0.1692 0.1700 0.1356∗∗

RBoost 0.2150 0.1768 0.1323∗∗ 0.2150 0.1768 0.1715∗∗ 0.2150 0.1768 0.1311∗∗

ARank 0.1718 0.1711 0.1351∗∗ 0.1718 0.1711 0.1706∗∗ 0.1718 0.1711 0.1358∗∗

LRank 0.1694 0.1688 0.1360∗∗ 0.1678 0.1711 0.1672∗∗ 0.1713 0.1719 0.1366∗∗

LNet 0.1665 0.1703 0.1355∗∗ 0.1601 0.1682 0.1620∗∗ 0.1646 0.1696 0.1348∗∗

MART 0.2700 0.1758 0.1380∗∗ 0.2155 0.1803 0.1796∗ 0.2696 0.1688 0.1408∗∗

LMART 0.3056 0.1777 0.1412 0.3056 0.1777 0.1717∗∗ 0.3056 0.1777 0.1370∗∗

Purchase

SVM 0.1785 0.1772 0.1336∗∗ 0.1831 0.1754 0.1755∗∗ 0.1816 0.1752 0.1320∗∗

LR 0.1978 0.1739 0.1310∗∗ 0.1978 0.1739 0.1782∗∗ 0.1978 0.1739 0.1332∗∗

RM 0.3359 0.1698 0.1363∗∗ 0.3329 0.2305 0.1798∗∗ 0.3327 0.1685 0.1376∗∗

Both

WT 0.1970 0.1682 0.1334∗∗ 0.1815 0.1763 0.1761∗∗ 0.1781 0.1648 0.1375∗∗

LMRM 0.2943 0.2597 0.1354∗∗ 0.3087 0.2530 0.1688∗∗ 0.2943 0.2594 0.1332∗∗

LETORIF 0.1765 0.1550 0.1351∗∗ 0.2731 0.1841 0.1801 0.2039 0.1698 0.1494

Symbol * indicates that the method is outperformed by the best one by 0.05 statistical signi�cance level, ** indicates 0.01.
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Figure 2: Distribution of positions of items being purchased

in the top 4 spots of a search result page. �e �rst position

achieves the most purchases, while nearly 70% of purchases

are in the lower positions.

When 1 < K ≤ 10, LETORIF outperforms all other baselines.

Runner-up methods mostly belong to the category of click. RM is

the runner-up method when K = 2, and RNet when K = 3, and

LMART when 3 < K ≤ 10. �e result indicates that by reranking

the search sessions, the proposed LETORIF can bring about more

revenue when items favored by a user is ranked among top 2 to 10.

Based on the observations, LETORIF is proven to be an e�ective

LETOR method for optimizing revenue for an EC search engine in

both the classic LETOR evaluation se�ing. As an individual model

LETORIF performs best under most se�ings and is the runner-up

w .r .t . Rev@1. It can be used to directly optimize search sessions

or easily incorporated to an existing system to complement with a

ranking or classi�cation model.

5 RELATED WORK

LETOR models are supervised learning methods that aim to esti-

mate the relevance between queries and entities (documents, prod-

ucts, blog posts, etc.). In web search, for example, a query is associ-

ated with a number of documents and each document is associated

with a relevance score. With the relevance scores, the objective of

LETOR methods is to optimize some prede�ned evaluation metrics,

such as NDCG or cross entropy. According to the loss functions of

LETOR methods, they can be categorized into point-wise, pair-wise

and list-wise methods. Point-wise methods predict each document

individually, pair-wise methods predict the relative order of each

two of the documents, and list-wise methods directly optimize the

list-wise evaluation metrics. Popular LETOR methods that have

been widely used in academia and industry are mostly pair-wise

and list-wise methods, including RankBoost [8], AdaRank [36],

MART [10, 42] which are point-wise, and LambdaRank [3], Lamb-

daMART [35], and ListNet [4] which are list-wise.

In the context of web search, relevance is a main metric for rank-

ing web documents. Besides manually labeling relevance score

between a query and a document, user feedback signals can also

be used to infer the relevance. Existing work mainly focuses on

the click-through rate assuming that a more intensively clicked

document is more likely to be relevant to the corresponding search

query [32], and various approaches and heuristics have been used

to alleviate bias brought by users and positions. In the context of

product search, the association between user a�ention and satis-

faction is unclear, and the user satisfaction for a search session

cannot be directly obtained. Previous research has also studied how

the user satisfaction can be measured and predicted based on user

behaviors [6]. A detailed description of how search relevance is

measured in real-world search engines has also been reported [39].

Product search in an EC platform has become an emerging chal-

lenge due to the increased popularity of EC websites and their local

search engines. Economic theory models and Markov chains [17]

have been explored to help rank product search results. Duan et

al. study a keyword-based product search engine [7]. Recent work

explores general guidelines on best practices for adapting LETOR

methods for product search [26] where di�erent LETOR methods

and experimental se�ings have been studied. In order to obtain

ground-truth data, they also test di�erent kinds of user feedback

signals including click-through rate, cart-add rate, order rate and

total revenue. Our work di�erentiates itself from existing research
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Table 6: Comparison of average revenue of search sessions in terms of Rev@K with a varying K , from top 1 to top 10. For each

search session, the following methods are adopted to rerank the results and Rev@K is calculated based on the actual purchase.

Category Method Rev@1 Rev@2 Rev@3 Rev@4 Rev@5 Rev@6 Rev@7 Rev@8 Rev@9 Rev@10

Click

RNet 4.47∗∗ 4.69∗∗ 4.89∗∗ 4.91∗ 5.06∗∗ 5.23∗∗ 5.21∗∗ 5.33∗∗ 5.46∗∗ 5.55∗∗

RBoost 4.57∗∗ 4.69∗∗ 4.69∗∗ 4.76∗∗ 4.97∗∗ 5.17∗∗ 5.23∗∗ 5.36∗∗ 5.49∗∗ 5.57∗∗

ARank 4.37∗∗ 4.66∗∗ 4.76∗∗ 4.90∗∗ 5.06∗∗ 5.20∗ 5.33∗∗ 5.47∗∗ 5.59∗∗ 5.67∗∗

LRank 4.38∗∗ 4.61∗∗ 4.74∗∗ 4.86∗∗ 5.07∗∗ 5.25∗∗ 5.42∗∗ 5.42∗∗ 5.67∗∗ 5.78∗∗

LNet 4.30∗∗ 4.59∗∗ 4.78∗∗ 4.99∗∗ 5.16∗∗ 5.35∗∗ 5.49∗∗ 5.61∗∗ 5.63∗∗ 5.63∗∗

MART 4.62 4.72∗∗ 4.86∗∗ 5.04∗∗ 5.26∗∗ 5.47∗∗ 5.47∗∗ 5.64∗∗ 5.74∗∗ 5.86∗∗

LMART 4.46∗ 4.54∗∗ 4.73∗∗ 5.10∗∗ 5.31∗∗ 5.56∗∗ 5.75∗∗ 5.90∗ 6.01∗∗ 6.14∗∗

Purchase

SVM 4.41∗∗ 4.54∗∗ 4.76∗∗ 4.77∗∗ 4.95∗∗ 5.16∗∗ 5.34∗∗ 5.50∗∗ 5.64∗∗ 5.77∗∗

LR 4.29∗∗ 4.65∗∗ 4.65∗∗ 4.69∗∗ 4.74∗∗ 4.81∗ 4.94∗∗ 4.97∗∗ 5.11∗∗ 5.11∗∗

RM 4.52∗∗ 4.82∗∗ 4.86∗∗ 5.02∗∗ 5.18∗∗ 5.33∗ 5.50∗∗ 5.66∗∗ 5.79∗∗ 5.92∗∗

Both

WT 4.52∗∗ 4.69∗∗ 4.80∗∗ 4.85∗∗ 5.01∗∗ 5.07∗∗ 5.23∗∗ 5.32∗∗ 5.35∗∗ 5.41∗∗

LMRM 4.42∗∗ 4.50∗∗ 4.72∗∗ 5.08∗∗ 5.23∗∗ 5.41∗∗ 5.57∗∗ 5.60∗∗ 5.73∗∗ 5.85∗∗

LETORIF 4.58∗∗ 4.90 5.08 5.47 5.64 5.85 6.02 6.19 6.40 6.54

Symbol * indicates that the method is outperformed by the best one by 0.05 statistical signi�cance level, ** indicates 0.01.

by focusing on optimizing the whole session of product search:

clicking on a search result page and purchasing on a product de-

scription page. �ere are also studies exploring other aspects of

the EC search problem, such as facet selection [30], search result

diversi�cation [40], feature learning [1, 29] and product popular-

ity [21]. Our work is also related to NDCG optimization. NDCG is

not di�erentiable since it requires the ranking order of items, and

surrogate functions usually need to be used, such as a function that

upper bounds the NDCG measure [28], or a probabilistic position

estimate function [27]. Another line of research utilizes the change

of NDCG measure to regularize the optimization process [37].

�e problem of predicting a purchase behavior is similar to that

of post-click prediction of search sponsored ads since both prob-

lems consist of a prior stage of clicks and a �nal stage of conversion.

Current research mainly regards the conversion as an indepen-

dent stage [11, 25], and binomial classi�cation models are usually

adopted. �e problem is also related to estimating user behaviors

by utilizing a user’s content [12] and network information [33, 34].

�ere has also been research focused on directly optimizing revenue

of search sponsored ads. Radlinski et al. proposes a keyword-based

method that linearly combines the bidding price with the estimated

click-through rate to maximize the revenue of a search engine plat-

form [24]. Zhu et al. propose to jointly optimize the relevance

and bidding price [43, 44]. However, current revenue optimization

research in search sponsored ads usually models the click stage as

a point-wise estimation task, since the number of ads is usually

small. Our work optimizes a list-wise cost function since there

are usually more products in a typical EC search session and the

ranking order ma�ers. �ere is computational advertising research

that studies the maximization of expected revenue by considering

clicks and bidding price [31]. However, revenue optimization of

product search and advertising are intrinsically di�erent since price

of a product is the cost a user has to pay while price of an ad is the

cost that an advertiser bids to pay. A detailed description about

transforming click streams of online advertising into conversions

has been reported [38].
Evaluation metrics for an information retrieval system are used

to measure the extent of similarity between a rank list and the

ground truth. Several list-wise cost functions are commonly used to

evaluate a LETOR task, such as DCG@K, NDCG@K, Precision@K,

BEST@K, ERR@K and RR@K. Due to limitation of space, we select

NDCG@K in this work, which is relatively more o�en used than

other metrics in the literature. In fact, there is no signi�cant di�er-

ence between di�erent metrics. In addition to the o�ine metrics,

online metrics such as click-through rate, session success and aban-

donment rate have also been used to measure the extent of success

of an information retrieval system, which focus on data extracted

from user logs. However, these metrics are concentrated on web

search, and ignoring revenue, which is the key measure to evalu-

ate success of a product search engine, To this end, we propose a

novel evaluation metric for ranking lists, Rev@K, which provides a

clearer perspective to understand how the ranking methods impact

the actual revenue in a real-world se�ing.

6 CONCLUSION AND FUTUREWORK

With the popularity of EC platforms, product search has been an

emerging issue for improving consumer satisfaction of online busi-

ness. Traditional research regards search in EC platforms as a

special case of web search, where products are being processed as

web documents. In contrast, our work reveals the key feature of

product search that distinguishes itself from web search: it consists

of two stages, namely comparing and clicking a product on a search

result page and deciding whether to purchase a product on the

product description page. A novel LETOR framework is proposed

to optimize the two stages jointly with implicit user feedback sig-

nals. Mathematical formulation is suggested to e�ciently solve the

optimization problem, and we conduct extensive experiments on

real-world EC search log data to elaborate on di�erent aspects of

the proposed method.

Several interesting future directions remain to be studied. Since

we focus on implicit user feedback signals, it would be interesting

to explore the possibility of having manual annotators or crowd-

sourcing workers to label the dataset. It would also be interesting

to study how personalization can be adopted to further boost the

performance.
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