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ABSTRACT
Online A/B tests play an instrumental role for Internet companies
to improve products and technologies in a data-driven manner. An
online A/B test, in its most straightforward form, can be treated
as a static hypothesis test where traditional statistical tools such
as p-values and power analysis might be applied to help decision
makers determine which variant performs better. However, a static
A/B test presents both time cost and the opportunity cost for rapid
product iterations. For time cost, a fast-paced product evolution
pushes its shareholders to consistently monitor results from on-
line A/B experiments, which usually invites peeking and altering
experimental designs as data collected. It is recognized that this
flexibility might harm statistical guarantees if not introduced in
the right way, especially when online tests are considered as static
hypothesis tests. For opportunity cost, a static test usually entails a
static allocation of users into different variants, which prevents an
immediate roll-out of the better version to larger audience or risks
of alienating users who may suffer from a bad experience. While
some works try to tackle these challenges, no prior method focuses
on a holistic solution to both issues.

In this paper, we propose a unified framework utilizing sequen-
tial analysis and multi-armed bandit to address time cost and the
opportunity cost of static online tests simultaneously. In particular,
we present an imputed sequential Girshick test that accommodates
online data and dynamic allocation of data. The unobserved poten-
tial outcomes are treated as missing data and are imputed using
empirical averages. Focusing on the binomial model, we demon-
strate that the proposed imputed Girshick test achieves Type-I error
and power control with both a fixed allocation ratio and an adaptive
allocation such as Thompson Sampling through extensive experi-
ments. In addition, we also run experiments on historical Etsy.com
A/B tests to show the reduction in opportunity cost when using
the proposed method.
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1 INTRODUCTION
In the current landscape of Internet companies, rapid iteration is
the key to product success. Online A/B testing1, as the de-facto
method for such process, provides a scientific way for comparing
multiple variants and ultimately choosing the one that improves a
company-aligned metric with greatest confidence. An online A/B
experiment, in its most straightforward form, can be considered as
an online static A/B testing following a Null Hypothesis Statistical
Testing (NHST) framework. While it provides traditional statistical
tools such as p-values and power analysis to help decision makers
determine which variant performs better, NHST also imposes a num-
ber of requirements on the experimentation setup that may make
an experiment infeasible or costly in practice. In general, two types
of costs exist in NHST framework, namely time cost and opporunity
cost, placing inherent challenges to fast product iterations.

For time cost, the main issue is that an experiment following
NHST requires a fixed sample size and therefore a fixed time window,
which does not allow repeated significant testing, or “continuous
monitoring” [3, 6]. In particular, under such a framework, an ex-
periment sample size needs to be fixed in advance, as a function
of effect size, power, and significance levels. This may lead to a
pre-determined sample size that is prohibitively large, especially
when the difference to be detected is small (as is often the case
with challenging business metrics, such as conversion rate, that are

1In this paper, we use “testing”, “test” and “experiment” interchangeably.
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difficult to move). In such a scenario, it may take months or even
years to collect enough samples in order to properly power and
conclude a test. As mentioned, the NHST framework also prohibits
continuous monitoring. This means that statistical guarantees only
hold once all samples, up to a pre-determined sample size, have
been observed. In practice, this “no peeking” rule can be difficult
to follow, especially when early results look compelling. Pressure
from stakeholders to improve metrics and iterate quickly often
lead practitioners to draw conclusions about an experiment pre-
maturely, which violates the assumption of a fixed sample size, and
ultimately renders the result of the A/B test invalid.

For opportunity cost, it primarily comes from a static allocation
of users for the duration of an experiment, which is imposed by the
NHST framework. In a typical static A/B test setting, users are pre-
allocated into the control or treatment group in advance. The ratio
of users allocated to each variant (e.g., 50% v.s. 50%) is also fixed
throughout the experiment. This means that no matter how good
or bad a user experience is in either variant, they must stay in that
variant for the remainder of the experiment period. If one variant
outperforms the other early on in the experiment, a static allocation
setting prevents an immediate roll-out of the better version until
the conclusion. While this may be acceptable in most cases, this
method runs the risk of alienating users who may suffer from a bad
experience in the sub-optimal variant.

To address time cost, sequential testing (ST) as a principled
methodology has been developed in statistics. In a nutshell, ST
allows intermediate checks of significance, enabling continuous
monitoring. In addition, ST can help decision makers conclude an
experiment earlier with often much fewer samples than the pre-
determined sample size. Because of these attractive properties, ST is
becoming more widely adopted in Internet companies that seek for
more rapid product evolutions. The most commonly used method
of ST follows the Sequential Probability Ratio Test (SPRT) proposed
by Wald [20], providing a frequentist-view of the optional stopping
criterion for A/B tests. Later, Robbins [13] developed a class of STs
named mixture Sequential Probability Ratio Test (mSPRT), which is
widely used by researchers and practitioners. It is further utilized
by Johari et al. [5, 6] to establish an always valid p-value for online
experiments to mitigate the problem of p-value peeking. However,
the main drawback of this line of work is that they primarily focus
on the hypothesis setting H0 : θ1 = θ2 vs H1 : θ1 , θ2, which
cannot be used to distinguish which variant is truly better. In ad-
dition, a controversy of mSPRT is that it is a test of power one [14],
meaning that under any alternative θ1 , θ2, the test is eventually
guaranteed to reject the null hypothesis, if the user is willing to
wait long enough. This implies that the test potentially never ter-
minates, leading to a sub-optimal situation for online tests where
rapid decision-making is required.

To address opportunity cost, Scott from Google [17] discusses
how Google utilizes Multi-Armed Bandit (MAB) techniques to de-
velop an adaptive scheme for allocation on their platform. This
technique uses a stopping rule based on percentage reward, which
is different from the cumulative regret studied in the MAB literature.
In addition, Johari et al. [6] discusses the effect of using MAB inside
mSPRT but does not provide any experimental results.

In this paper, we provide a unified framework to address these
two major costs from online static A/B tests simultaneously. In par-
ticular, we develop a novel ST such that the better variant can be
identified, offering more effective decision-making than simply de-
tecting the difference. Additionally, the proposed approach exploits
Thompson sampling, a specific form of MAB, to achieve an adaptive
allocation for users in an experiment. The proposed method opti-
mizes the outcome (reward) of the experiment while reducing the
risk of losing users who are exposed to the sub-optimal variant.
Our contributions are as follows:

(1) Propose an imputed sequential Girshick test for Bernoulli
model with a fixed allocation.

(2) Use simulations to demonstrate that the test procedure also
applies to an adaptive allocation such as Thompson sampling
with a small error inflation.

(3) Conduct a regret analysis of A/B tests from the MAB perspec-
tive.

(4) Conduct extensive studies including simulations as well as
experiments on an industry-scale experiment, demonstrat-
ing the effectiveness of the proposed method and offering
practical considerations.

The remainder of this paper is structured as follows: In Section 2,
we introduce related work. In Section 3, we introduce the proposed
framework. We conduct simulations in Section 4, and then show
results from industrial-scale experiments in Section 5. Finally, in
Section 6, we conclude the paper and present future directions.

2 RELATEDWORKS
In this section, we provide some preliminaries and related works
in three of the areas that our proposed method touches on.

2.1 Sequential Probability Ratio Test
Proposed by AbrahamWald, sequential analysis [20] studies experi-
ments where the number of observations required is not determined
in advance and at each stage of the experiment a decision is made
to accept some hypothesis, reject it, or take more observations. In
this section we review the sequential probability ratio test (SPRT)
for testing simple hypotheses.

Consider a one-variant experiment concerning a random variable
X ∼ fθ (·) where θ ∈ Θ ⊂ R and with two simple hypotheses
H0 : θ = θ0 and H1 : θ = θ1 (assuming θ0 < θ1 without loss
of generality). Because we want to make decisions based on the
true value of θ , and based on our risk tolerance, we should divide
the domain of θ into three parts: ωa = {θ : θ < θ0} region with
preference for acceptance of H0 , ωr = {θ : θ > θ1} region with
preference for rejection of H0, and a region of indifference.

The sequential probability ratio test has strength (α , β) in the
sense that

Type-I error = P(reject H0 |θ < θ0) ≤ α (1)
Power = P(reject H0 |θ > θ1) ≥ 1 − β . (2)

For a given choice of constants A,B ≥ 0, at each stage of the
experiment we compute the probability ratio

p1m
p0m

=
fθ1 (x1:m )
fθ0 (x1:m ) .



We continue the experiment and take more observations if B <
p1m
p0m < A; if p1mp0m > A, then the process terminates with a decision to
rejectH0; and if

p1m
p0m < B then we termiante with acceptance ofH0.

The choice of A,B determines the strength (α , β) - with a practical
approximation of this relationship given by A = 1−β

α and B = β
1−α .

This choice of A,B might inflate total errors, but Wald has shown
that at most one of the Type I or II error would increase [20].

Although the SPRT finishes in finite time with probability 1, an
experiment could continue for an arbitrarily long time, which is
impractical. Wald also studied the effect of setting an upper bound
t0 on the number of observations. If the sequential test does not
have a decision by t = t0, then we accept H0 at the t0-th trial
when p1,t0

p0,t0
≤ 1 and rejectH otherwise. The truncation would cause

inflation in errors and Wald advises that we should choose t0 at
least three times the expected number of observations required by
the sequential test procedure to have negligible error inflation [20].

2.2 Composite hypotheses and sequential A/B
tests

To study composite hypotheses with sequential analysis, Wald also
came up with a mixture Sequential Probability Ratio test (mSPRT) for
composite hypothesis H0 : θ ∈ θ0 against H1 : θ , θ0. It involves
choosing a mixture distributionw(θ ) for parameters in the region
with preference of rejection and calculating the likelihood p1n with

p1n =

∫
ωr

fθ (x1:m )ω(θ )dθ .

Often in A/B testing, we have two variants: control and treatment
parametrized by θ1 and θ2 and the objective is to test whether
treatment is different from control. Johari came upwith always valid
p-value for the power 1 (β = 0) mSPRT in [6] forH0 : θ = θ1−θ2 = 0
vs H1 : θ , 0, and discussed the application to A/B tests for binary
data using some normal approximations (see Section 4.3 in [5]).

Optional stopping in Bayesian A/B tests with the hypotheses
above has been studied by Deng and Lu [3]. The Bayesian test
controls False Discovery Rate and relies on using genuine priors
with known prior odds.

2.3 Girshick Test for pairs of data
The mSPRT detects the existence of a treatment effect (that θ1 , θ2),
but it does not make decisions about which group is better. This is
in conflict with the primary goal of A/B testing: to choose the better
variant. M.A. Girshick [4] proposed a special SPRT for choosing the
better population. For single parameter models, suppose X ∼ fθ1 (·)
and Y ∼ fθ2 (·), we want to test the hypothesis H : θ1 ≤ θ2. This
test assumes that data comes in pairs (xi ,yi ).

For a fixed choice of θ01 and θ02 we consider two hypotheses H0:
θ1 = θ01 , θ2 = θ02 and H1 : θ1 = θ02 , θ2 = θ01 The values θ01 and θ02
define the magnitude of difference worth detecting for a business
decision. The probability ratio test statistic with t pairs of data is

p1t
p0t
=

t∏
i=1

fθ 0
2
(xi )fθ 0

1
(yi )

fθ 0
1
(xi )fθ 0

2
(yi )
. (3)

For Bernoulli models, this is the double dichotomy problem.
If Xi

iid∼ Bern(p1) and Y iid∼ Bern(p2), then a sufficient statistic at

time t would be (tXt , tYt ), number of successes in each group. Then
Equation 3 reduces to

p1t
p0t
=

(
1 − p02
1 − p01

p01
p02

)tYt−tXt

, (4)

with log probability ratio

log
(
p1t
p0t

)
= t

(
Yt − Xt

)
log

(
1 − p02
1 − p01

p01
p02

)
. (5)

The log term we denote by

ν (p1,p2) = log
(
1 − p2
1 − p1

p1
p2

)
(6)

can be used as measure of deviance between p1 and p2. It satisfies
the following properties: (1) ν (p1,p2) = 0 ifp1 = p2, (2) ν (p1,p2) < 0
if p1 > p2 and (3) ν (p2,p1) = −ν (p1,p2). This measure of deviance
is visualized in Figure 1(a).

With any δ > 0, this deviance measure can divide the pa-
rameter space (0, 1)2 into three parts: ωa = {ν (p1,p2) < −δ } ,
ωr = {ν (p1,p2) > δ } and ωo = {−δ ≤ µ(p1,p2) ≤ δ }, corre-
sponding to the region with preference for acceptance of H , region
with preference for rejection of H and region of indifference in
Wald’s SPRT framework. We visualize these three regions defined
by δ = 0.3 in Figure 1(b).

Girshick’s double dichotomy test goes as follows: fix some δ > 0
and at time t , we would have t pairs of data and the log likelihood
ratio is

Zt = log
(
p1t
p0t

)
= (−δ ) × t ×

(
Yt − Xt

)
. (7)

We can interpret the log probability ratio in Equation 7 as the prod-
uct of the risk tolerance (δ ), the sample size (t ), and the difference
in empirical averages (Yt − Xt ). This intuition becomes important
for our imputed sequential Girshick test.

We calculate the log likelihood ratio then terminate and accept
H : p1 < p2 at time t if log

(
p1t
p0t

)
≤ logB, terminate and reject H at

time t if log
(
p1t
p0t

)
≥ logA, and continue the test by taking another

observation pair if logB < log
(
p1t
p0t

)
< logA. With A and B chosen

based on α , β , this test has strength (α , β) because

P(reject H |ωa ) ≤ α (8)
P(reject H |ωr ) ≥ 1 − β (9)

Again for all practical purposes we choose A = 1−β
α and B = β

1−α .
It has been shown that the power of this test is constant for any

p01,p
0
2 such that ν (p01,p

0
2) = d . The exact power and distribution of

stopping time τ = inf{t : Zt ≥ logA or Zt ≤ logB} are also given
in [4].

2.4 Thompson sampling based controlled
experiments

In addition to sequential analysis, multi-armed bandit experiments
have also been used as an A/B testing procedure for best-arm iden-
tification in the online service economy [17]. The goal is to identify
the best arm while simultaneously collecting the most reward in



Figure 1: Top (a): the measure of deviance ν (p1,p2) =

log
(
1−p2
1−p1

p1
p2

)
for binomial model. Bottom (b): The regions

with different preferences of decisions for H : p1 < p2 with
risk tolerance δ = 0.3. The three regions are ωa = {ν (p1,p2) <
−δ } (the region with preference towards acceptance of H ,in
red) andωr = {ν (p1,p2) > δ } (region with preference towards
rejection, in blue) and ωi (region of indifference, in white).
The Girshick test has Type-I error P(reject H |ωa ) ≤ α and
Type- II error P(accept H |ωr ) ≤ β .

doing so. In this paper, we focus our discussion on Thompson sam-
pling [18], as it is a default choice for many Internet companies,
such as Google’s Analytics Content Experiment platform [16]. Com-
pared to fixed-time NHST, Thompson sampling based experiments
are more cost-efficient because they gradually allocate users to the
winning variant. These experiments are usually conducted in a
streaming fashion and do not assume that observations in control
and treatment groups come in pairs.

In it’s most basic form, the Thompson sampling method works as
follows: Suppose there are K groups that we want to compare, each
having some average reward θ1,θ2, · · · ,θK . Thompson sampling
requires a prior on each θk . As data is collected, the posterior
distribution of each θk is sequentially updated. After t data points
X1:t are collected, the next customer is assigned to arm k based
on the probability of the k-th arm being the optimal one, given

the current data. This probability is calculated from the posterior
distribution of rewards through

P(θk = maxθ |X1:t ) =
∫
I(θk = maxθ )π (θ1:K |X1:t )dθ1:K . (10)

The performance of multi-armed bandit decision algorithms,
such as Thompson sampling, is generally measured through re-
gret. For a Bernoulli bandit problem, the per-period regret at t is
regrett (θ ) = maxk θk − θat where at indicates the allocation of
the t-th sample. Suppose the process terminates at stopping time τ .
Then the cumulative regret is

R(τ ) =
τ∑
t=1

(
max
k

θk − θat

)
. (11)

For more details of Thompson sampling, see [15, 17].
In terms of practicality, there have been theoretical studies on

the asymptotic behaviors of Thompson sampling as well [8, 11].
Chapelle and Li [1] empirically evaluated the asymptotic regret of
Thompson sampling and that it satisfies the Lai and Robins optimal
bound [8].

How to properly stop a Thompson sampling based A/B test is still
an open problem. On Google’s platform, experiments are conducted
for at least 2 weeks by default. Beyond that, the experiment is
terminated when there is at least a 95% probability that the posterior
expected value remaining in the experiment is less than 1% of the
champion’s conversion rate [16]. Johari also discussed using bandits
within mSPRT based A/B tests [6] and it assumes the true value of
p1+p2

2 is known.
While through Thompson sampling, we gain the ability to op-

timize reward by allocating more resources, users, etc. to the best
variant, we lose the frequentist error control provided by sequential
analysis. It is far more challenging to establish stopping conditions
that allow for the control of Type-I&II error and when the data
generating process varies over the course of the experiment. In the
following, we will consider extensions to the Sequential Girshick
Test with the goal of restoring some of this statistical control.

3 IMPUTED SEQUENTIAL GIRSHICK TEST
Traditional sequential tests, including the Girshick test, are not
designed for streaming experiments. In a streaming environment,
when a new customer visits the website at time t , she will be as-
signed into control or treatment group with some probability ρ(t)
and 1−ρ(t), resulting in unequal number of customers in each group.
In this section, we propose modifications to the sequential Girshick
test for pairs. This new test can support two allocation schemes:
(1) static ρ(t) = ρ and (2) data-dependent ρ(t) with Thompson
sampling.

3.1 Imputation in static allocation experiments
First, let us consider a static allocation rate experiment with ρ(t) =
ρ > 0 for all t . Suppose at time t there have been m customers
in the control group and n = t −m customers in the treatment
group. Instead of having t pairs of data, we only have t single
observations. We can formulate this as a missing data problem with
n responses missing from the control andm responses missing from
the treatment.



As shown in Equation 4, it is sufficient to impute the total num-
ber of successes in the missing observations. We can impute the
number of missing successes in control and in treatment with
np̂1 =

n
m

∑m
i=1 xi and mp̂2 =

m
n

∑n
j=1 yi respectively. Then the

imputed log probability ratio for t pairs of data becomes

(−δ )t ©« 1n
n∑
j=1

yi −
1
m

m∑
i=1

xi
ª®¬ = (−δ )t

(
Yn − Xm

)
. (12)

If we treat t imputed pairs as t observed pairs, this imputation
would inflate the Type-I& II errors above level (α , β), on top of the
error inflation from setting A =

1−β
α ,B =

β
1−α and truncation at

some t0. So we also replace t in Equation 6 with an effective pair size
2

1
m +

1
n
= 2mn

t , the harmonic mean ofm,n. With the imputations
and effective pair size, the approximate log likelihood ratio becomes

Ẑt =
�

log
(
p1t
p0t

)
= (−δ )2mn

t

(
Yn − Xm

)
. (13)

We would compare the approximate log likelihood ratio in Equa-
tion 13 against logA and logB to sequentially make decisions. Sim-
ulation experiments in Figure 2 demonstrate that this test indeed
achieves strength (α , β).

By the law of large numbers, if not truncated with static alloca-
tion rate ρ, we have mn

t → ρ(1 − ρ)t and Yn − Xm → p2 − p1 the
true treatment effect as t → ∞. If p1 , p2, the statistic Ẑt = O(t),
and this process terminates in finite time with probability 1.

3.2 Thompson sampling and imputation
As mentioned in Section 2.4, there are no error-based stopping
rules for Thompson sampling based hypothesis tests. In this section,
we propose a stopping rule for such experiments and empirically
evaluate the errors in Section 4.1

The likelihood ratio in Equation 13 does not explicitly involve the
allocation ratio ρ, so why not use the same formulas with adaptive
allocation methods, similar to Thompson sampling? As proved in
the multi-armed bandit literature, Thompson sampling is greedy
in the limit with infinite exploration [11], which means although
every arms is visited infinitely often in the limit, eventually we
allocate all the resources to the optimal arm. Assume control is
the better variant in the Thompson sampling based A/B test, then
ρ(t) → 1 as t → ∞.

Without truncation, there is a non zero probability that a process
with Equation 13 never terminates, which we want to avoid with
sequential tests. To this end, we use the geometric mean

√
mn as

the effective pair size for Thompson Sampling.
To approximate the treatment effect, we would still use the em-

pirical average, although this estimator is consistent [11] but not
unbiased [12]. The imputed log likelihood ratio test statistics for
Thompson Sampling becomes

Z̃t =
�

log
(
p1,t
p0,t

)
= (−δ )

√
mn

(
Yn − Xm

)
. (14)

We expect to see some minor error inflation with these imputations
and they are visualized via simulations in Figure 3.

Designing a sequential test that accommodates multi-armed ban-
dit based adaptive allocation is still an open problem as discussed

by Johari in the discussions following Theorem 4 in [6]. It is chal-
lenging because the estimates of p1 and p2 are already biased with
adaptive allocation [12]before introducing optional stopping. In
the following section we will show via simulations that the test is
able to reliably select the better variant while bounding errors as
designed.

4 SIMULATED EXPERIMENTS
In this section we evaluate the imputed Girshick test procedure
using three metrics: 1) reliability in terms of Type-I&II error con-
trol, 2) length of an experiment, and 3) cumulative regret during
the experiment. All simulations in this section assume data from
both the control and treatment groups to be drawn from Bernoulli
models, Bern(p1) and Bern(p2), respectively.

4.1 Type I & II error
To test the significance level and power of the proposed imputed
sequential Girshick test, we run experiments for various values of
p1,p2 from the parameter space (0, 1)2 with α = 0.05 and β = 0.05
and truncation at t0 = 8000.

Based on our simulation experiments with static ρ = 0.5 allo-
cation, the imputed double dichotomy test using static allocation
Equation 13 yields Type-I&II errors below α and β . Figure 2 shows
the probability of accepting the hypothesisH : p1 < p2 in a heatmap.
Each pixel is the average over 500 repetitions. The red lines are
contour of the decision boundary ν (θ1,θ2) = ±0.3. For all pairs of
(p1,p2) tested such that ν (p1,p2) < −0.3 (above the dotted red line)
the probability of accepting H is greater than 0.95. For all values
such that ν (p1,p2) > 0.3 (below the solid red line), the probability
of accepting H is below 0.05.

Figure 2: Probability of accepting the null hypothesis H0 :
p1 < p2 using the imputed Girshick test with fixed alloca-
tion ratio of ρ = 0.5 at significant level α = 0.05, power
1 − β = 1 − 0.05 from 100 repeated experiments. The red con-
tour curves show the regions with preference of acceptance
and rejection. They are chosen using 1−p2

1−p1
p1
p2 > 1/eδ or < 1

eδ
with δ = 0.3.



We also performed adaptive allocation experiments using the
approximations in Equation 14 and independent Uniform priors
on git a, and examined the probability of acceptance. As shown in
Figure 3, there are some values ofp1,p2 for whichwe observe higher
Type-I and Type-II error rates than desired. These violation occur
at values of p1,p2 in ωa and ωr that are very close to the decision
boundary of ν (p1,p2) = ±0.3. Typical values of these higher-than-
expected errors rates are 0.06 − 0.08 as compared to the expected
0.05. This suggests that in practice, if we want to have the flexibility
of using adaptive allocations, we should set a conservative decision
boundary δ close to 0.

Figure 3: Probability of accepting the null hypothesis H0 :
p1 < p2 at significant level α = 0.05, power 1 − β = 1 − 0.05
of the imputed sequential Girshick test from 500 repeated
experiments. The allocation scheme is Thompson sampling
with the independent non-informative prior Beta(1, 1) on p1
and p2. The red contour curves shows the regions with pref-
erence of acceptance and rejection. They are chosen using
1−p2
1−p1

p1
p2 > eδ or < 1

eδ
with δ = 0.3. The values (p1,p2) leading

to a error violation are marked with the acceptance proba-
bility in red.

4.2 Stopping time
Another goal of sequential testing is to find statistically valid early
stopping rules for A/B tests such that experimentation times can be
shortened and product iterations can happen more rapidly. In the
following simulation, we demonstrate the reliability of the proce-
dure from the previous section (Figure 2 & 3) and study the stopping
time of experiments to show that the total length of experiment
time can be reduced.

For these simulations, we fix the data generating parameters at
p1 = 0.45 and p2 = 0.5, and set the decision boundary at δ = 0.1.
We have ν (0.45, 0.5) = −0.20 < −δ = −0.1. This boundary is
quite conservative, so we expect to see the desired error control
with both fixed allocation and Thompson sampling allocation. The
strength of the experiment is set to α = β = 0.05 and truncation
at t0 = 8000. In this set up, we test different allocation schemes:

(1) static allocation with ρ = 0.5, (2) static fixed allocation with
ρ = 0.7, (3) Thompson sampling with independent Beta(1, 1) prior
on both p1 and p2 and (4) Thompson sampling with independent
priors p1 ∼ Beta(45, 55) and p2 ∼ Beta(50, 50). The first set of priors
are uniform, non-informative priors, which we would use without
any prior knowledge. The second set of priors are informative
priors that are consistent with the true values of the parameters.
In practice,we cannot start with such good priors. Prior choice
impacts the performance of Thompson sampling and in practice
we cannot start with such ideal priors. W While prior specification
is an important topic and is known to have a large impact on the
finite-time performance of Thompson sampling, it is beyond the
scope of the paper and interested readers can refer to Chapter 6.1
of [15].

static allocation Thompson sampling
ρ = 0.5 ρ = 0.7 Unif. priors inform. priors

P(accept|ωa ) 99.8 % 99.75% 97.7% 99.55%
average τ 1165.26 1383.86 1300.47 1537.59

min 186 148 263 235
median τ 1024 1194 1140 1376

max 5622 6214 4952 6329
Table 1: Comparison of number of observations required
by the imputed Girshick test using different allocation
schemes. For the same set up p1 = 0.45,p2 = 0.5,α = 0.05, β =
0.05, a fixed-time two-sample proportion test needs 2589.479
observations in each group.

The results of the simulation are shown in Figure 4. As can be
seen from the histogram, to achieve the same significance level
of 0.05 and power of 0.95, the fixed-time proportion test requires
2589.479 pairs of samples (equivalent to 5178.958 total samples),
whereas our sequential test only needs, on average, 1165 samples.
In fact, all four tests rarely exceed the sample size of a fixed-time
proportion test.

Similar to mixture Sequential Probability Ratio Tests (see Figure
2 in [6]) and Google’s Analytic experiments (see Figure 3 in [16]),
the distribution of number of observation required from a imputed
sequential Girshick test is also right-skewed. Most of the time we
arrive at the decision much earlier than a fixed-time NHST, but
occasionally the experiment can take much longer. This is the price
we pay for having the flexibility of a sequential test that supports
both peeking and adaptive allocation.

4.3 Regret
Our third metric of quality for A/B tests is the total loss (of clicks,
revenue, etc.) suffered over the course of an experiment, which we
quantify as cumulative regret. For the same experiments mentioned
in Table 1, we calculate the cumulative regret (Equation 11) at
stopping time.

Using the imputed sequential Girshick test, we hope to see that
Thompson sampling has a lower cumulative regret than static al-
location, since introducing Thompson sampling is motivated by
reducing cost. As our simulation experiments show, using Thomp-
son sampling indeed gives lower cumulative regret compared to



Figure 4: A histogram of stopping times for the imputed
sequential Girshick test using different allocation schemes,
corresponding to Table 1. The dashed black line is the sam-
ple size required by a fixed-time proportion test. There is a
vanishingly small number of simulations where the sequen-
tial test requires more samples than the fixed-time propor-
tion test.

static allocation Thompson sampling
ρ = 0.5 ρ = 0.7 Unif. priors inform. priors

P(accept|ωa ) 99.8% 99.75% 97.7% 99.55%
average R 29.15 48.46 17.56 13.64
minR 4.6 4.9 0.30 0.40

median R 25.75 41.85 11.38 9.00
maxR 142.8 219.05 127.00 97.20

Table 2: Comparison of cumulative regret of imputed Gir-
shick test using different allocation schemes. For the same
set up p1 = 0.45,p2 = 0.5,α = 0.05, β = 0.05, a fixed-time two-
sample proportion test has cumulative regret 129.5.

static allocation experiment. Although Thompson sampling based
experiments would run longer than static allocation, as seen in
Figure 4, the cumulative regret is much smaller. In addition to that,
all the sequential tests have smaller regret than the fixed-time test.

We also note that Thompson sampling with an informative prior
(consistent with the truth) yields the best cumulative regret perfor-
mance. Although in practice our prior specification may not be as
good, the simulations indicate that Thompson sampling with an
uninformative, uniform prior still has smaller regret than both static
allocation experiments. This leads us to conclude that the superior
regret performance will still hold even in light of a sub-optimal
prior choice.

5 INDUSTRY EXPERIMENTS
To validate whether our theoretical considerations and insights
from simulated experiments remain valid when applied to real
experiments, we evaluate the performance of our sequential test

Figure 5: Histogram of cumulative regret of the 2000 simula-
tion experiments in Table 1. Dashed black line is the cumu-
lative regret of a fixed-time NHST.

on data from historical A/B tests on Etsy.com, a large e-commerce
website specializing in handmade and vintage goods. Real-world
experimental data introduces interesting challenges including non-
stationary parameters and computational cost of real-time posterior
updates.

5.1 Data and Experimental Set-up
We study a 12-day experiment that ran from 2018-05-15 to 2018-05-
27 on Etsy’s A/B testing platform. The metric of the experiment
is hourly conversion rate per session. We model conversion rates
in the control and treatment as p1 and p2 (respectively) with a
Bernoulli model. The null hypothesis is H : p1 ≤ p2, indicating that
the treatment is better than the control, which is consistent with
the outcome of this historical A/B test. Because many industry-
scale experiments are tasked with detecting very small changes,
we conservatively set δ = 0.01. This will detect, for example, a
conversion rate of 3.70% versus 3.75%.

We use bootstrap re-sampling to generate responses from the
experiment and compare a static allocation and Thompson sam-
pling allocation scheme, as we did with the simulated experiments
conducted in Section 4. In all following experiments, we use an
allocation rate ρ = 0.5. The Thompson sampling experiments used
independent Uniform priors on p1 and p2. To update allocation
probabilities in Equation 10, we use Monte Carlo approximations.

In contrast to the sequential updates where we calculate the log
probability ratios and update posterior distributions at each step,
we perform batch updates in these large-scale experiments. In the
following experiments, we make a decision to terminate, continue,
or to change the allocation ratio at every b = 100 steps. Using batch
updates reduces computational cost in Thompson sampling and
is easier to implement for streaming A/B tests with frequent user
visits.



5.2 Results
In this section, we evaluate these bootstrapped experiments using
the samemetrics discussed in Section 4, namely error control, length
of experiment, and cumulative regret.

In terms of error control, 100% of static allocation experiments
and 98% of Thompson sampling experiments correctly accepted the
hypothesis H : p1 ≤ p2. When evaluating by length of experiment

Figure 6: Histogram of stopping times of 200 bootstrap
re-sampling experiments. Using static sampling, 69/200 ex-
periments stop on 2018-05-18 and the longest experiment
would end on 2018-05-18. Thompson sampling experiment
take longer, 51/200 experiments end on 2018-05-18 with the
longest experiment stopping on 2018-05-28.

time, most experiments using both allocation schemes would stop
on 2018-05-18 (the 4th day). This is in contrast to the original end
date of 2018-05-27 of the historical experiment. A histogram of
the stopping time of this conversion rate experiment is shown in
Figure 6.We note that some Thompson sampling based experiments
can last longer, with 1/200 bootstrapped experiments ending after
the original end date of 2018-05-27.

Cumulative regret, the third metric for evaluation, from both
allocation schemes are shown in Figure 7. The average regret from
Thompson sampling and static allocation are 398 and 288, respec-
tively.

This outcome differs from our simulated experiments, specifi-
cally in which static allocation at ρ = 0.5 outperforms Thompson
sampling with uniform priors. However, recall that cumulative
regret is the average number of ‘successes’ we lose in an experi-
ment. Considering the scale of the experiments, this is very low
cost. Furthermore, to explain this discrepancy, we speculate that
the batch updates contribute to the higher regret from Thompson
sampling. Updating at every b = 100 samples means holding onto
newly collected evidence. But the sooner we use the information,
the higher the conversion and revenue the system will have. Also,
the use of a Uniform prior could cause Thompson sampling to
under-perform static allocation. For a conversion rate experiment,
Uniform prior is a missspecified prior since it is not coherent with

Figure 7: Histogram of cumulative regret of the 200 boot-
strap re-sampling experiments. The average regret from
Thompson sampling is 398 and average regret 288 from
static allocation.

typical range of conversion rates. That missspecified priors delay
learning is illustrated in our simulation experiments and has been
noted in literature [15]. Practically speaking, we could incorporate
informative priors given access to more historical experiments, be-
cause they capture the typical range of conversion rates. Precedents
of learning objective priors from historical experiments have been
seen in [2]. This may close the gap in terms of regret performance
between static allocation and Thompson sampling experiments.

6 DISCUSSION
Time and opportunity cost during A/B tests are two major chal-
lenges of Internet experiments. As we have demonstrated with
simulations (Section 4) and real-data experiments (Section 5), static
allocation experiments ends early while Thompson sampling based
allocation would save cumulative experimental cost if we have good
priors.

6.1 Practical considerations
The proposed imputed sequential Girshick test procedure allows
enough flexibility like static/adaptive allocation, peeking and batch
updates. Like all sequential tests, the price we have to pay is oc-
casionally waiting longer than a fixed-time NHST with the same
strength.

With the benefits of sequential tests presented in this paper,
we want to acknowledge that continuously monitoring is not al-
ways recommended. The current framework does not support time-
varying trends in the data or delays in response for example in
monthly or seasonal metrics.

6.2 Future directions
The superior regret performance of Thompson sampling applies
in the asymptotic setting but with sequential tests we would not
enter the asymptotic regime. There is very little theoretical results



on finite time regret [7] of Thompson sampling at some proper
stopping time.

Although fixed-time experiments are expensive, it does offer
the benefit of unbiased estimation of parameters. The empirical
averages from imputed sequential Girshick test are biased estimates
of the true parameters, because of the decisions we make to stop
the test early. Post-selection inference has recently been discussed
by many authors, for example for forward step-wise regression [19]
and Lasso [9] and for additive total effects in A/B tests by Lee and
Shen from Airbnb [10].

There is also negative bias in treatment effect estimation from
using Thompson sampling. Estimation bias from adaptively col-
lected data have been studied by Nie et al. [12], with debiasing for
Thompson sampling in the Gaussian setting. Bias correction from
Thompson sampling for Beta-Bernoulli is still an open problem. We
expect that using bias adjusted estimates ofp1 and p2 in Equation 14
should have better performance in terms of error control and costs.

In the future we would like to extend this test procedure to other
models for example normal distribution with known variance and
regret in terms of profit during experiments. We would also like to
study an extension of the Girshick test for A/B/n experiments.
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